Floating Offshore Wind Turbines: Responses in a Seastate Pareto Optimal Designs and Economic Assessment
نویسنده
چکیده
Wind is the fastest growing renewable energy source, increasing at an annual rate of 25% with a worldwide installed capacity of 74 GW in 2007. The vast majority of wind power is generated from onshore wind farms. Their growth is however limited by the lack of inexpensive land near major population centers and the visual pollution caused by large wind turbines. Wind energy generated from offshore wind farms is the next frontier. Large sea areas with stronger and steadier winds are available for wind farm development and 5MW wind turbine towers located 20 miles from the coastline are invisible. Current offshore wind turbines are supported by monopoles driven into the seafloor at coastal sites a few miles from shore and in water depths of 10-15m. The primary impediment to their growth is visual pollution and the prohibitive cost of seafloor mounted monopoles in larger water depths. This paper presents a fully coupled dynamic analysis of floating wind turbines that enables a parametric design study of floating wind turbine concepts and mooring systems. Pareto optimal designs are presented that possess a favorable combination of nacelle acceleration, mooring system tension and displacement of the floating structure supporting a five megawatt wind turbine. All concepts are selected so that they float stably while in tow to the offshore wind farm site and prior to their connection to the mooring system. A fully coupled dynamic analysis is carried out of the wind turbine, floater and mooring system in wind and a sea state based on standard computer programs used by the offshore and wind industries. The results of the parametric study are designs that show Pareto fronts for mean square acceleration of the turbine versus key cost drivers for the offshore structure that include the weight of the floating structure and the static plus dynamic mooring line tension. Pareto optimal structures are generally either a narrow deep drafted spar, or a shallow drafted barge ballasted with concrete. The mooring systems include both tension leg and catenary mooring systems. In some of the designs, the RMS acceleration of the wind turbine nacelle can be as low as 0.03 g in a sea state with a significant wave height of ten meters and water depths of up to 200 meters. These structures meet design requirements while possessing a favorable combination of nacelle acceleration, total mooring system tension and weight of the floating structure. Their economic assessment is also discussed drawing upon a recent financial analysis of a proposed offshore wind farm.
منابع مشابه
The effect of second-order hydrodynamics on floating offshore wind turbines
Offshore winds are generally stronger and more consistent than winds on land, making the offshore environment attractive for wind energy development. A large part of the offshore wind resource is however located in deep water, where floating turbines are the only economical way of harvesting the energy. The design of offshore floating wind turbines relies on the use of modeling tools that can s...
متن کاملOPTIMAL DESIGN OF JACKET SUPPORTING STRUCTURES FOR OFFSHORE WIND TURBINES USING ENHANCED COLLIDING BODIES OPTIMIZATION ALGORITHM
Structural optimization of offshore wind turbine structures has become an important issue in the past years due to the noticeable developments in offshore wind industry. However, considering the offshore wind turbines’ size and environment, this task is outstandingly difficult. To overcome this barrier, in this paper, a metaheuristic algorithm called Enhanced Colliding Bodies Optimization...
متن کاملFloating Offshore Wind Turbines: Tension Leg Platform and Taught Leg Buoy Concepts Suppoting 3-5 Mw Wind Turbines
The development is presented of two low weight, motion resistant stiff floating wind turbine concepts for deployment in water depths ranging from 30 to several hundred meters in seastates with wave heights up to 30 meters supporting 3-5 MW onshore wind turbines. The floating wind turbines may be fully assembled at a coastal facility in their upright position prior to being towed to the offshore...
متن کاملEvaluation of Turbulence on the Dynamics of Monopile Offshore Wind Turbine under the Wave and Wind Excitations
In recent years, the use of offshore wind turbines has been considered on the agenda of the countries which have a significant maritime boundary due to more speed and stability of wind at sea. The aim of this study is to investigate the effect of wind turbulence on the aero-hydrodynamic behavior of offshore wind turbines with a monopile platform. Since in the sea, the wind turbine structures ar...
متن کاملPerformance based assessment of offshore wind turbine platform using the constrained new wave method
The purpose of this study is to provide a more accurate and practical method than static and spectral methods to assess the offshore wind turbines that are loaded with both wave and wind time history, the structure is evaluated by increasing the load intensity in successive steps to the stage of failure and the performance of the platform in different wave patterns are investigated. In this stu...
متن کامل